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Periodicity and relaxation are investigated for the trajectories of the states in one-dimensional
finite cellular automata with rules 90 and 150 [S. Wolfram, Rev. Mod. Phys. 55, 601 (1983)].
The time evolutions are described with matrices. An eigenvalue analysis is applied to clarify the

maximum value of period and relaxation.

PACS number(s): 05.45.+b, 02.10.Nj, 89.70.+c

I. INTRODUCTION

Cellular automata are one of the simplest mathemat-
ical models for nonlinear dynamics to produce compli-
cated patterns of behavior, which had been originally
introduced by von Neumann [1]. Wolfram had reintro-
duced cellular automata as a model to investigate com-
plexity and randomness [2]. He investigated many funda-
mental features of them [3-5]. Since then many authors
have made efforts to clarify the properties of cellular au-
tomata and applied to natural systems [6].

One-dimensional cellular automata are described by
the discrete time evolution of site a;:

(l.i(t + 1) = F(ai_r(t),ai_,+1(t), ce ,ai(t), Ce ,a”T(t)),

(1.1)

where a; takes k discrete values over Z,. The simplest
model, elementary cellular automaton, consists of sites
with two internal states over Z, interacting with the
nearest-neighbor sites (r = 1). Wolfram introduced a
naming scheme for these models and classified the be-
havior of cellular automata into four classes [2,3].

Most authors have worked on cellular automata within
the scope of the infinite number of sites. A few works
have concerned periodic boundary condition (cylindrical
automata) [5,7-10]. In our previous paper [11] (referred
to as paper I) we had investigated the periodic orbits of
finite rule 90 cellular automata with Dirichlet boundary
conditions. We analyzed the eigenvalue equations of the
transfer matrices which describe the time evolution of the
system. In the present paper the method is extended to
the rule 150 case. Some results obtained in paper I will
be cited again for completeness.

II. MODELS AND NUMERICAL RESULTS

We review the numerical results obtained in paper I on
so-called rule 90 cellular automata following Wolfram’s
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naming scheme. The time evolution of the ith site a;(t) €
{0,1} (¢ = 1,...,N) is described as a sum modulo 2 of
the nearest-neighbor sites:

(li(t + 1) = algl(t) + ai+1(t) mod 2. (21)

We use the Dirichlet boundary conditions ag = ay41 =
0. In Wolfram’s classification the rule 90 model belongs
to the third class which shows the chaotic behavior. The
time evolution is also expressed by the matrix

Alt+1) = UA(t),

where A(t) = ‘!(a1(t),az(t),...,an(t)) describes the
state (with N bits binary number) at ¢t and the trans-
fer matrix U is given by

1 j=itl
Uy = { :
0 otherwise.

(2.2)

(2.3)

In paper I we had found the periodic structures of the
transfer matrices U numerically as shown in Table I.
They are summarized as follows:

Uy — 1 (N is even), (2.4a)
Ulv+ny — U7~ (N is odd), (2.4b)
UN =0 (N =2" —1). (2.4¢)

Exponents Iy and 7 are found numerically. Let us
briefly describe how to find Iy and ny. First a sequence
U™ (n=0,1,2,...) is produced. One can find that the
sequence is periodic for NV # 2™ — 1. For even N cases,
the smallest value of n satisfying U™ = [ is found, where
I is a unit matrix. The value n corresponds to Il in
Eq. (2.4a). For odd N cases except N = 2" —1, there is no
solution of U™ = I. One can, however, find the shortest
value I of period, UI~¥*™ = U™, The minimum value
of m stands for mx in Eq. (2.4b).

For cellular automata with even number of sites
[Eq. (2.4a)], every state except the null one (all sites are
zero) is on the orbits with period not exceeding IIy. The
concrete periods depend on the initial states. The period
Il corresponds to the least common multiple of them,
and we call it the maximum period. The states on the
orbits with the maximum period have the lowest symme-
try. The states with some symmetries are on the orbits
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with shorter periods than IIy. For cellular automata
with odd number of sites except N = 2™ —1 [Eq. (2.4b)],
some states belong to the orbits with period Iy or less
and the others except the null state are drawn to the
periodic orbits after some time steps not exceeding the
maximum relaxation 7. It is very interesting that in the
N =2" -1 (n € Z) case every state is drawn into the
null state after at most N steps [Eq. (2.4c)]. In this case
the configuration space has only one basin with the null
state at the center. Schematic features of trajectories are
shown in Fig. 1.

Next we investigate the rule-150 case, which also be-
longs to the third class in Wolfram’s classification. The
time evolution is described as a sum modulo 2 of the site
itself and the nearest neighbors:

ai(t+1) =a;_1(t) + ai(t) + a;+1(t) mod 2. (2.5)
The transfer matrix is given by

o _J1, j=ixlorg=1
Ui {0 otherwise. (2.6)

The periodicity of the transfer matrices is also found nu-
merically as shown in Table I. There are no cases drawn
into the null state as described by Eq. (2.4c) for the rule

90 model. For cellular automata with N = 3n + 2 there
appear the periodic orbits of period not exceeding Il

TABLE 1. Periodicity of the transfer matrix U for rule-90
and rule-150 cellular automata.

(@ (b)

©)

FIG. 1. Schematic features of the trajectories of cellular
automata: (a) simple periodic orbit, (b) periodic orbit with
relaxation, and (c) limit point.

with the relaxation path whose maximum length is .
For the others N # 3n + 2 all states are on the periodic
orbits except the null state.

The maximum periods IIy of the rule-90 and rule-
150 cellular automata are found to coincide each other
in many cases of the number of sites (see Table I and
Figs. 2 and 3). Grassberger had reported the similar-

N | rule 90 rule 150

3 Ud=0 Ut=1

4 Ut=r1 Ut=r1

5 Us=U Us =U*

6 vt =1 Ut =1

7 U'=0 U =1

8 U14 — I U16 — U2

9 U =U U2 =7p
10 Us2=1_ U2 =71
11 Ull — U3 U12 — U8
12 U2t =g U2 =71
13 U®*® =U U*® =1
14 U =7g U3 = py?
15 U =0 Ut =71
16 U =rg U =71
17 U?¥® =U U =yt
18 U1022 — I U1022 — I
19 U? =y U* =1
20 U126 — I U128 — U2
21 U?s =y U2t =1
29 U094 — 1 U094 — 1
23 U23 — U7 U24 — U16
24 U2046 — I U2046 — I
25 U =U Ut =1
26 U1022 — I U1024 — U2
27 U =y? U =71
28 U32766 — I U32766 — I
29 Ust =U U® =U®
30 U =1 U =1
31 U =0 U* =1
32 U =1 Ut =u?

515, /HN=2N-1 °
145 / //l
o131 i, =/21\//2+1 )
2124 ®/

/
o1l ; o
2104 / o o

1, = 20218N +2.340

I e
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L B e o
15 20 25 30
N

FIG. 2. Distribution of the maximum periods of the rule-90
cellular automata. The bold line is the average of the periods
except N = 2™ — 1 cases. The dashed line denotes the curve
Iy = 2N/2+1 _ 2. which fits peaks of N = 6, 10, 18, 22, and

28.
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FIG. 3. Distribution of the maximum periods of the
rule-150 cellular automata. The bold line is the average of
the periods of all number of sites. The dashed line denotes
the same as in Fig. 2.

ity between the rule-90 and rule-150 cases in behavior
[12]. Especially the steepest peaks N = 6,10,18,22,28
coincide between the rule-90 and rule-150 cases, whose
periods are expressed by IIy = 2V/2+1 — 2, The max-
imum periods grow exponentially for the average of all
numbers of sites except N = 2™ — 1 cases, in which all
states are drawn into the null states within N steps for
rule 90 and IIy = N + 1 for rule 150.

III. EIGENVALUE ANALYSIS

The trajectories of rule-90 cylindrical automata had
been investigated by Martin, Odlyzko, and Wolfram [5].
They analyzed characteristic polynomials which describe
the states of cellular automata. The method seems to
work well in the periodic boundary cases. To investi-
gate the periodic structures analytically in the Dirichlet
boundary cases, we had introduced the simpler method
to analyze the eigenvalue polynomials in paper I. The
eigenvalue equation of the transfer matrix

UA=—-)A (3.1)
leads to the secular equation
DN (\) = |U + M| = 0. (3.2)

All calculations are carried out over Z, since a site a;

takes binary values.
The recursion relation of the eigenvalue polynomials
for rule-90 cellular automata
DN (A) = ADN () — DN (3.3)
gives the explicit form of DV (). The eigenvalue polyno-
mial DV ()) is over Galois field of order 2, GF(2), namely,
all coefficients of A* are over Zs:

Jmax

DM(2) =) (CF mod 2) AN %,

; (3.4)

j=0
where jmax = |IV/2], | | is a Gaussian symbol (|| is the
largest integer not exceeding z) and

ey =y (V7). (35)

J

Note that the definition of C]N is slightly different from
that in paper I.

The eigenvalue polynomials for the rule-150 cellular
automata are given by the replacement A — A + 1 in
Egs. (3.3) and (3.4):

DN(A) = (A +1)DN 1)) = DN ()), (3.6)

TABLE II. Eigenvalue polynomials for rule-90 cellular au-
tomata.

N| DN (1))

3 A3

4 A+ A4

5 pIEEDY

6 A8+t 41

7 T

8 PSS LR S |

9 A%+ A%+ A

10 PRLIEED LN D Ly |

11 Al 4 )3

12 PR ST N D Lty |

13 AR A% 1A

14 A AT A% 4

15 AL®

16 A6 LM L A2 4 A8 4

17 AT A A% 1A

18 A AT L ATZ A0 L A8 A2 4
19 DR T

20 A2O+/\18+A16+/\10+A8+A4+A2+1
21 AL AT A% H A% A

22 AP2 L A% AT A8 A% A 4
23 A% T

24 )\24+/\22+A20+A16+/\6+A4+1
25 PRI ED LN LTS CRNESY

26 /\26+A24+A20+/\18+A16+/\4+A2+1
27 AT A a3

28 /\28+A26+A24+)\18+A16+/\2+1
29 A2 AT L AT A

30 /\30+/\28+/\24+A16+1

31 A3

32 /\32+/\30+/\28+/\24+/\16+1
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jmax
DN(\) = Z (¢ mod 2) (A +1)N %,

j=0
N [(N-Fk)/2]

= Z (C;% mod 2) A¥, (3.7)
k=0 7=0

NN IN 9

C}’Nkz(—1)1< . J)< k”). (3.8)

Some examples of DV () for the rule-90 and rule-150
cellular automata are shown in Tables II and III.

These eigenvalue equations enable us to find the max-
imum periods Iy and the maximum length 7x of the
relaxation path to the periodic orbits. First we study
nilpotent cases DV (A) = AP(Y), In paper I we found
that those happen for the rule 90 with V = 2™ — 1 sites
and P(N) = N. All states are drawn into the null state
within steps N or less. The rule-150 model does not show

TABLE III. Eigenvalue polynomials for rule-150 cellular
automata.
N| D ())
3| B+ A +a+1
4 A+ 2A%+1
5/ A%+t
6] A +2%241
7
8

ATHX XA AT A+

A8 A8 4 22

9 AP AB AT LA A+

10] A4+t 41

11 A11+A10+A9+A8

12] A2 4 A8 4 A4

13 AB A2 A5+ At 0 +1

14 /\14+A10+A8+A6+A2

15 /\15+A14+A13+/\12+A11+A10+A9+)‘8+A7

FAE AT AT NI AT A+

16 A A AT L AB LA A2 41

17 A17+A16+A13+A12+A5+A4

18] AL A2 L A0 L AS LAt A2 41

19 A19+A18+/\17+A16+A11+A10+A9

NS M D LIS LNy GrEy |

20 A20+A18+A16+A10+A2

21 AP AT A A% A+

22) AZZ LA L\ A% 4

23 A23+/\22+/\21+A20+A19+A18+A17+A16

24 A24+A22+A18+As+1

25 A25+A24+A21+A20+A17+A16+A9+A8+A+1

26 /\26+A20+A16+/\10+A2

27 A27+A26+A25+/\24+A11 +/\10+A9

FAE LN LA LA+

28 /\28+)\26+/\24+/\2°+/\16+/\12+A1°+A8

+At+ A%+ 1

29 A29+A28+A21+A20+A17+A16+)\13+A12+A5+A4

30 )\30+/\26+A24+/\22+A18+A14+/\10+A8

+A8 4+ A% 41

31 ASI +A30+/\29+A28+A27+A26+A25+A24+/\23

+A22+A21+A20+/\19+A13+A17+A16+A15

FAM T3 L A1Z AT A0 A% 4 B 4 T

SN TP LN LTS CNE) LIRS W |

32( A32 430 4 226 4 224 4 )22 4 )18 4 z\14 4 z10

+A% 4+ A8 4 A%

similar behavior.

Next we discuss the cases that there are constant terms
in polynomials. Those happen for the rule-90 with even
number of sites since CJI-ZM = (=1)¥/2-2 for even N. For
the rule-150 case the polynomials have a constant term
for N # 3n+2 by Eq. (3.6). The eigenvalue polynomials
reduce to the simple forms as AP(N) 4+ 1 = 0 by multi-
plying some power of A and repeatedly substituting the
eigenvalue equation to itself [13,14]. The minimum value
of the power P(N) corresponds to the maximum period
IIxy. If the eigenvalue polynomial is factorized, we are
able to get shorter periods depending on the initial state
from those factors by the procedure mentioned above.
For instance, we consider N = 4 rule-150 cellular au-
tomata (Fig. 4). The eigenvalue equation A* + A2 +1 =10
reduces to A® + 1 = 0 and the maximum period is given
as II4 = 6. The eigenvalue equation is also factorized to
(A24+ X +1)? = 0. We find another solution A3 = 1 from
A2+ X+1 = 0. Therefore there are period-6 and period-3
orbits for N = 4 rule-150 cellular automata.

Explicit expression of the maximum period Il is sim-
ply obtained for N = 2™ — 1 rule-150 cellular automata.
In this case the identity (Nj_’) mod 2 = 0 holds for j # 0.
The nonzero elements of C;‘IYC are C(']I,\,’c = (1:) By the
identity (2n,: 1) mod 2 = 1 for all non-negative integers k,
the eigenvalue polynomial reduces to DV (1)) = ZL\LO PLA
Following the above procedure, we find the maximum
period IIy = N + 1.

Finally we study the cases that the lowest powers of
polynomials are greater than 0, namely, they have the
forms as DV(A) = XP(N)f(X), where f()) is a poly-
nomial with a constant term. The number of null so-
lutions, p(N), corresponds to the maximum length of
relaxation path mn. Applying the above procedure to
f(A), we obtain the maximum period and shorter ones.
For example, we show the case of N = 5 rule 90 cel-
lular automata (Fig. 5). The eigenvalue polynomial is
DV (X) = A(A* +1). The maximum length of relaxation
path is m5 = 1. From A* + 1 = 0, we find the maximum

1000 0011
M
1011 0001
v
1010 1101
0111 0101 1001
v
0010 1110 0110
1100 0100 1111

N

FIG. 4. The orbits of N = 4 rule-150 cellular automa-
ton. All states are classified into three orbits excepts the null
states. Two of them are period-6 and the other is period-3.
The null state is an isolated fixed point. The periods are the
same as those for rule 90, although the detail behaviors are
not (see Fig. 1 in paper I).
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10000 10111 11000 10010

01000 «— 00101 11100 €4— 01101
v A

10100 —» 00010 10110 — 00111

11101 00001 01001 00011

01011 01100 00100

v
10011 «=11110 01010
v
10001

11111

01111 —» 11001

00110 11010

10101

ey

FIG. 5. The orbits of N = 5 rule 90 cellular automaton.
This figure is the same as Fig. 2 in paper L.

01110

\ 4
11011 €—

period II5; = 4. We also find shorter periods-2 and -1 by
factorizing A* + 1 = (/\2 +1)2=(+ 1)%.

A simple recursion relation of the maximum period
and maximum length of relaxation are found for rule 90

cellular automata with odd number of sites. The new
recursion relation
DN (X)) = A2DV-2(\) — DN -4 ()) (3.9)

holds by virtue of algebra in GF(2). This gives a simple
form D?"*1(A) = AD™(A\?). The maximum period and
the maximum length of relaxation path of N = 2n + 1
rule-90 cellular automata are described by those of N = n
sites as

Mopyp = 200, + 1, (3.10)
Toni1 = 27, + 1. (3.11)
IV. CONCLUDING REMARKS
We investigate the periodic structures of one-

dimensional rule-90 and rule-150 cellular automata with
Dirichlet boundary conditions. We find three types of
behavior. The first is a periodic one which appears in
cellular automata with an even number of sites for rule
90 and N # 3n + 2 for rule 150. The second appears
in the cases of an odd number of sites for rule 90 and
N = 3n + 1 for rule 150. There are some periodic orbits

and irreversible relaxation paths to them. The peculiar
behavior happens to the case NV = 2™ — 1 for rule 90. All
states are drawn into the null state within NV steps.

The eigenvalue equations of the transfer matrices are
analyzed. The maximum period is obtained by finding
the minimum power to satisfy AP(™) + 1 = 0. Shorter
periods are given by factorizing the eigenvalue polyno-
mials. The number of null solutions of the polynomials
gives the maximum length of relaxation path. For some
special cases, we find the explicit forms of the maximum
period. The distribution of periods and relaxation is still
not clear.

Roots of the eigenvalue equations, in general, are found
over the Galois extension of finite fields [13,14]. For all
positive integers N there are primitive polynomials P(z)
of degree N over GF(2). One of the roots a of P(z) gen-
erates the Galois extension GF(2"), whose elements are
{0,1,,02,. .. ,(12‘N ~2} and a?” =1 = 1. Other roots of
P(z) are called conjugate of a and generate the isomor-
phic Galois extensions. A general polynomial of degree
N has roots over GF(2V). A eigenvalue polynomial has
N roots {a;} € GF(2V) (i = 1,2,...,N). For instance,
in the N = 4 rule-150 case, the equation A* + A2 +1 =0
has roots in {0,1,a,a?,...,a'} (a!® = 1), where
is one of roots of the forth degree primitive polyno-
mial A* + A + 1 = 0. Explicitly the roots are o® and

o!'® with multiplicity 2 for each. The minimum com-

mon multiplier of the roots, which satisfies o* = 1,
30 This seems to suggest the maximum period-6,
namely, (a®)® = (a'®)® = &3 = 1. This procedure,
however, does not work for other cases. For example,
the eigenvalue polynomial of the N = 3 rule-150 case is
A2 + A2 + X + 1. It can be factorized to (A + 1)® and
the root is A = 1 with multiplicity 3. The periods, how-
ever, are 4, 2 and 1. More number theoretical studies are
expected.

The elementary cellular automata are also subjects to
build a built-in self-test of very-large-scale integrated cir-
cuits [15,16]. Usually the shift registers, which generate
pseudorandom sequences of length 2 — 1 with N reg-
isters, are used for built-in self-tests. Our results show
that the elementary cellular automata can also generate
exponentially long but not maximum sequences. By a
fine-tuned mixture of rule-90 and rule-150 cases, hybrid
cellular automata, it has been shown to be able to pro-
duce maximum length pseudo-random sequences.
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